Valence Number is the number of valence electrons in an atom or combined group of atoms which can be easily given up or accepted to react with or bond to another atom or group of atoms to form a molecule. It is a whole number (positive or negative) which represents the power of one element to combine with another. Administrative Offices: 1900 West Polk Street, Suite 220C. Chicago, IL 60612. In chemistry, the valence or valency of an element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules.
Transition elements are not much different from metals that go shoulder to shoulder in the main group elements. They appear like metals, they are malleable, ductile and can conduct both heat and electricity. The fact that the best two conductors – Copper (Cu) and Aluminum (Al) – are transition metals shows the extent to which their properties overlap.
However, they do not duplicate the results that we derived from the method above. One cannot enumerate their valence electrons by simply referring to their group number. This boils down to the way electrons occupy shells in transition elements.
To understand this exception, we must understand how electrons occupy shells in any element. First, however, we must unlearn the high school method of filling shells around an atomic nucleus: remember 2..8..8..18 and so on? Well, there’s a reason why we distribute electrons in this particular fashion.
The solar system analogy describing the arrangement of electrons around an atom is completely false. It should be immediately eliminated, but because it alleviates the difficulty that accompanies the exposition of the actual model, high school textbooks are replete with them.
Electrons do not occupy rigid shells around their nucleus. In fact, their location around a nucleus is highly uncertain. They can only occupy distinct energy levels around a nucleus. They’re most probable to be found there. The levels are technically known as quantum states and are denoted by what are called quantum numbers (n).
Now, the next sentence might sound hypocritical, but quantum numbers can be thought of as our good ol’ shells, but with sub-shells now, which are technically known as orbitals (s,p,d,f). Regardless of the falsity of this account, it fares quite well for a crash course such as this one.
There’s a rule that restricts the number of electrons that a sub-shell can accommodate: s-2, p-6, d-10 and f-14. If this wasn’t enough, adding to the delirium, the shells can only be filled in a specific order given below. Let’s call it the rule.
The electrons must be filled from left to right in this exact order only.
If we were to distribute electrons unconsciously with respect to how the sub-shells are lined up, as shown in the figure above, Calcium (Ca) with atomic number 20 would have the configuration 2,8,10 (2, 2+6, 2+6+2). Any high school chemistry textbook will tell you that this isn’t correct, as the precise configuration is 2,8,8,2.
However, because we must abide by the rule, we observe that 4s must be filled before 3d, such that there are now 8 in the 3rd shell and 2 in the 4th making the configuration: 2,8,8,2. Voila! As Richard Feynman would cheerfully exclaim: The pleasure of finding things out! Sadly, the joy is only half-lived — the reason for the rule itself, this apparent absurdity, is beyond the scope of this article.
Okay, so now that we know how shells are filled, we can move further to find the number of valence electrons in the transition elements. Consider Scandium (Sc) with its atomic number of 21. Filling the electrons according to our rule, we observe that the 21st electron occupies the 3d sub-shell. However, as the previously filled 4th shell (4s) has 2 electrons and is apparently the outermost shell, the number of valence electrons is 2.
Similarly, every transition element in the 4th period must have 2 valence electrons. The reason being that even though 3d gets filled ahead of 4s, the two electrons situated in the 4th shell are the inhabitants of the outermost shell and rightfully deserve the designation of valence electrons.
In fact, this is true for transition elements in every period. Consider Gold (Au), located in the 6th period (row) and the 11th group (column). In the process of fillings its shells, one can realize that the stuffing of 5d is followed by the stuffing of 6s. And because the 6th shell resides above the 5th, the number of valence electrons is… *drumroll*… 2!
However, this is how electrons would ideally line up. The energy differences between these shells are minuscule and electrons (or Nature, for that matter) covets stability more than anything else. An electron would happily make a leap to an adjacent shell of relatively equivalent energy to attain a more stable configuration.
A good example is the fickle configuration of a Copper (Cu) atom. Copper has 29 electrons in total, so the rearmost electrons are lined up as …4s^2-3d^9. For Copper, the configuration is a little unsettling — a more stable configuration would be to have 10 electrons in the 3d shell, and this is exactly what we observe! Because the energies of the shells are comparable, an electron from 4s makes a leap to 3d to fulfill a stable configuration. The number of valence electrons is now 1!
Valence Number Carbon

A number of elements amongst the transition elements portray this oddity. This is also observed in the inner transition elements due to the comparable energy levels of f, d and s shells. Therefore, in conclusion, the number of valence electrons for transition and inner transition elements varies in an unpredictable manner.
Although one can still predict the number of valence electrons for the transition elements – and 2 is what most of them would agree upon – this sort of prediction cannot be emulated for the inner transition elements. The difficulty is compounded as the locations of electrons themselves are highly ambiguous.
Valence Number Of Magnesium
The capricious behavior of their valence electrons, interminably quivering and hopping in indecision, deny any attempt to obtain a singular stable configuration — predicting then the number of valence electrons is near to impossible!
Boron Valence Number
